The properties of batrachotoxin-modified cardiac Na channels, including state-dependent block by tetrodotoxin
نویسندگان
چکیده
Batrachotoxin (BTX) modification and tetrodotoxin (TTX) block of BTX-modified Na channels were studied in single cardiac cells of neonatal rats using the whole-cell patch-clamp recording technique. The properties of BTX-modified Na channels in heart are qualitatively similar to those in nerve. However, quantitative differences do exist between the modified channels of these two tissues. In the heart, the shift of the conductance-voltage curve for the modified channel was less pronounced, the maximal activation rate constant, (tau m)max, of modified channels was considerably slower, and the slow inactivation of the BTX-modified cardiac Na channels was only partially abolished. TTX blocked BTX-modified mammalian cardiac Na channels and the block decreased over the potential range of -80 to -40 mV. The apparent dissociation constant of TTX changed from 0.23 microM at -50 mV to 0.69 microM at 0 mV. No further reduction of block was observed at potentials greater than -40 mV. This is the potential range over which gating from closed to open states occurred. These results were explained by assuming that TTX has a higher affinity for closed BTX-modified channels than for open modified channels. Hence, the TTX-binding rate constants are considered to be state dependent rather than voltage dependent. This differs from the voltage dependence of TTX block reported for BTX-modified Na channels from membrane vesicles incorporated into lipid bilayers and from amphibian node of Ranvier.
منابع مشابه
Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block by Na+
Single Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers formed from neutral phospholipids and were observed in the presence of batrachotoxin. The batrachotoxin-modified channel activates in the voltage range -120 to -80 mV and remains open almost all the time at voltages positive to -60 mV. Low levels of tetrodotoxin (TTX) induce slow fluct...
متن کاملA study of properties of batrachotoxin modified sodium channels.
A further analysis of the effects of the steroidal alkaloid batrachotoxin (BTX) on sodium channels in frog node of Ranvier has been carried out under voltage-clamp conditions. The main properties of modified channels as compared with those of normal ones are as follows: The rate of channel closing is drastically decreased, whereas that of opening is changed slightly if at all; The steady-state ...
متن کاملPharmacological modification of sodium channels from the human heart atrium in planar lipid bilayers: electrophysiological characterization of responses to batrachotoxin and pentobarbital.
BACKGROUND AND OBJECTIVE To investigate the effects of barbiturates on batrachotoxin-modified sodium channels from different regions of the human heart. Single sodium channels from human atria were studied and compared with existing data from the human ventricle and from the central nervous system. METHODS Sodium channels from preparations of human atrial muscle were incorporated into planar ...
متن کاملDivalent cation selectivity for external block of voltage-dependent Na+ channels prolonged by batrachotoxin. Zn2+ induces discrete substates in cardiac Na+ channels
The mechanism of block of voltage-dependent Na+ channels by extracellular divalent cations was investigated in a quantitative comparison of two distinct Na+ channel subtypes incorporated into planar bilayers in the presence of batrachotoxin. External Ca2+ and other divalent cations induced a fast voltage-dependent block observed as a reduction in unitary current for tetrodotoxin-sensitive Na+ c...
متن کاملComparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants
The purpose of these experiments is to test whether the differences between normal and tetrodotoxin-resistant Na+ channels reside in the selectivity filter. To do this, we have compared the selectivity of batrachotoxin-activated channels for alkali cations, organic cations, and nonelectrolytes in two neuroblastoma clonal cell lines: N18, which has normal tetrodotoxin (TTX) sensitivity, and C9, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 90 شماره
صفحات -
تاریخ انتشار 1987